Sustainable Management

manufacturing as if people and planet matter

Dr André Reichel Scientific Coordinator GSaME & Associate Cluster Director H

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Research Cluster H Sustainability in Manufacturing

Course Objectives

You will be able to answer the following questions:

- How can the terms Sustainbility/Sustainable Development be defined?
- What are the implications for the economy?
- How can business firms cope with Sustainability?
- What is the connection between aME and Sustainability?

© GSaME, Universität Stuttgart

Overview

- 1. The Concept of "Sustainability"
- 2. Sustainable Economics, Sustainable Society
- 3. Corporate Roads to Sustainability
- 4. Case Studies
- 5. Sustainable Manufacturing Engineering?

© GSaME, Universität Stuttgart

Sustainable Management

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Research Cluster H Sustainability in Manufacturing

Ecological Footprint

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Limits to Growth

Research Cluster H Sustainability in Manufacturing

"Wird derhalben die größte Kunst und

beruhen, wie eine sothane Conservation

und Anbau des Holtzes anzustellen [sei],

und nachhaltende Nutzung gebe, weil es

eine unentberliche Sache ist ohne welche

das Land in seinem [Wesen]nicht bleiben

Extraction rate \leq Regeneration rate.

Maintaining reproduction potential.

Extraction Rule of Sustainability:

Long-term view, outer sustainability.

daß es eine continuierliche beständige

Einrichtung hiesiger Lande darinnen

© GSaME, Universität Stuttgart

Universität Stuttgart ^{Germany}

maq."

1.

2.

"It is scarcely necessary to remark that a stationary condition of capital and population implies no stationary state of human improvement. There would be as much scope as ever for all kinds of mental culture, and moral and social progress; as much room for improving the Art of Living, and much more likelihood of its being improved, when minds ceased to be engrossed by the art of getting on."

Stationary State Economy: Zero Growth of Capital and Population

Focus on human and society, inner sustainability.

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Wohlstand und ökologischer Fußabdruck

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Research Cluster H Sustainability in Manufacturing

Humanity has the ability to make development sustainable to ensure that it **meets the needs of the present without compromising the ability of future generations to meet their own needs**.

The concept of sustainable development does imply **limits** ... imposed by the present state of technology and social organization on environmental resources and by the ability of the biosphere to absorb the effects of human activities.

...[Sustainable] development requires meeting the **basic needs** of all and extending to all the opportunity to fulfil their aspirations for a better life. A world in which poverty is endemic will always be prone to ecological and other catastrophes.

Focus on inter- and intragenenerational equity.

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Working Definition of Sustainability

Sustainability means

- the long-term well-being of humanities natural and social environment
- for the sake of individual human wellbeing
- within natural, societal and technological limits
- organized as a social learning process.

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

The Triple Bottom Line

"Ten years ago, at the United Nations Conference on Environment and Development, held in Rio de Janeiro, we agreed that **the protection of the environment, and social and economic development** are fundamental to sustainable development, based on the Rio Principles."

(Jo'Burg Declaration 2002)

- "Win-win" view on Sustainability.
- Decoupling of economic growth and ecologic pressures.
- Economic, ecological and social sustainability.
- Indicators, indicators, indicators...

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

The Embedded Spheres Model

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Overview

- 1. The Concept of "Sustainability"
- 2. Sustainable Economics, Sustainable Society
- 3. Corporate Roads to Sustainability
- 4. Case Studies
- 5. Sustainable Manufacturing Engineering?

© GSaME, Universität Stuttgart

Research Cluster H Sustainability in Manufacturing

Sustainability Context

The firm (organization, goals, membership)

in the context of economy (liquidity, ownership)

in the context of society (legitimacy, equity)

in the context of nature (reproduction, entropy)

in the context of 無名天地之始

Ecological Context

Sustainability Principles Ecological Stock	Substitution	Limitation
Sources Energie Sources	Depletable resources (e.g. fossil fuels) have to be replaced by renewable resources (e.g. all forms of solar energy).	Harvest rate of renewable resources must not exceed their regeneration rate.
Sinks	Waste and pollutants unkown to the ecosphere have to be repelaced by waste and pollutants known to the atmosphere (assimilation ability).	Emission rate of waste and pollutants known to the ecosphere must not exceed its assimilation capacity.

© GSaME, Universität Stuttgart

Societal Context

Economy

Liquidity

paying/not paying

Emission certificates

Green taxes

Liability law

Rules, regulations

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Research Cluster H Sustainability in Manufacturing

Organizational Context

Societal turbulences

- Ageing Workforce
- Diversity & gender
- Sustainability pressures
- "2.0"-Society

Technological turbulences

- Green/clean tech
- New Materials
- Nano-Bio
- Simulation technology
- Web 2.0 technology

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Market turbulences

- Customer demands
- New consumerism
- New competitors
- Network competition

The Firm

- Heterarchy complements/ substitutes hierarchy
- Motivational offers instead of command and control
- Business model innovation instead of incremental technical change
- Corporate citizenship instead of profit maximization

Political turbulences

- Green rules & regulations
- Diversity & Gender laws
- Labor laws
- International agreements

Ecological turbulences

- Climate change / Carbon footprint
- Resource depletion
- Loss of biodiversity
- Degradation of ecosystem services

Research Cluster H Sustainability in Manufacturing

Management Perspectives

Research Cluster H Sustainability in Manufacturing

Management Perspectives

Degrowth Economics

Physical Degrowth

Economic Degrowth

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Research Cluster H Sustainability in Manufacturing

Wir müssen al

enger schnal

den Gürtel

Degrowth Economics

Positive effects of growth

- Economies of scale.
- Positive feedback on sales by network effects of installed product base.
- Better refinancing conditions

Side-effects of growth

- Increased fixed costs.
- Increased quality and service costs.
- ...for more growth???

24

© GSaME, Universität Stuttgart

Degrowth Economics

Constant growth vs. constant profit

- Permanent firm growth not empirically evident over the long term.
- Cyclical up and down in sales and capital more realistic.
- Constant positive profit ≠ constant growth in profit

Minimum conditions of economic well-being

- Ability to discharge liabilities at all times.
- Ability to pay for all capital costs.
- Economic profit must not drop below zero.

© GSaME, Universität Stuttgart

Concepts of Sustainability Management

© GSaME, Universität Stuttgart

Research Cluster H Sustainability in Manufacturing

The Sustainable Production System

Overview

- 1. The Concept of "Sustainability"
- 2. Sustainable Economics, Sustainable Society

3. Corporate Roads to Sustainability

- 4. Case Studies
- 5. Sustainable Manufacturing Engineering?

© GSaME, Universität Stuttgart

Innovation

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Germany

Innovation Critique

Sustainable Management

Innovation Spectrum

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Research Cluster H Sustainability in Manufacturing

Loci of Innovation

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Sustainable Management

Innovation Process

Universität Stuttgart Germany

Sustainable Management

Lifecycle Sustainable Management

© GSaME, Universität Stuttgart

Holistic Production System

© GSaME, Universität Stuttgart

Strategy Framework for Manufacturing Firms

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Overview

- 1. The Concept of "Sustainability"
- 2. Sustainable Economics, Sustainable Society
- 3. Corporate Roads to Sustainability

4. Case Studies

5. Sustainable Manufacturing Engineering?

© GSaME, Universität Stuttgart

Sustainable Value Report 2008

BMW Group

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Group 1: Strategy and Organization (pp. 6-21)

- What understanding of sustainability is employed here (rational, normative, economic centrism, ecological centrism)?
- Evaluate how sustainability is institutionalized within BMW (organizational departments, responsible managers etc.)
- Being a strategy consultant for sustainable Manufacturing Engineering, you have been assigned to further develop BMW's sustainability strategy: what would you suggest? (three key issues)

Group 2: Product Responsibility (pp. 24-36)

- How is lifecycle responsibility integrated within BWM's product strategies?
- What is/are the key sustainability strategy/ies BWM employs on the product level?
- As a product developer consultant from sME & Co., what possible directions for future product strategies can you suggest? (three key issues)

Group 3: Environmental Management (pp. 38-46)

- What are the key sustainability strategies BMW employs on the production level?
- What steps would be necessary to build an "industrial ecology network" for BMW?
- How would you organize product development and production (factory as product) in order to minimize ecological impact of BMW?

General Discussion

- Is BWM a sustainable firm as far as you can tell from the report?
- What can BWM do to increase its sustainability?
- Is this a "good" sustainability report?

Overview

- 1. The Concept of "Sustainability"
- 2. Sustainable Economics, Sustainable Society
- 3. Corporate Roads to Sustainability
- 4. Case Studies

5. Sustainable Manufacturing Engineering?

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

What the fudge is **aME**?

- "Advanced Manufacturing Engineering is envisioned as a socio-technical system oriented towards permanent best of class usage of resources by fast implementation of innovative solutions."
- "[AME is supporting] the transformability of the manufacturing enterprises' structures and resources (technical, human and information based) orchestrated within the so-called Stuttgart Enterprise Model."
- Core Elements of aME:
 - Multi-scale hierarchical "System Theory"
 - New Taylorism "Scientific Management"
 - Global competition and standardized manufacturing
 - Lifecycle sustainable management

© GSaME, Universität Stuttgart

Sustainability within the aME/SUM framework

	1. Systems Theory	2. New Taylorism	3. Global Competition and standardized Manufacturing	4. Lifecycle Sustainable Management
Strategy				 Visions, concepts and actions to achieve long-term sustainability: Corporate Sustainability Management Corporate/Entrepreneurial Responsibility Inter- and Transdisciplinarity: Economy, Ecology, Society, Technology, Communication, Culture. Stakeholder orientation Values and emotions
Structure				 Open production Co-production with customers/stakeholders Production 4.0
Employees				 "Cooperationability" Human issues in factories/production systems Motivation beyond economics
Technology				 Lifecylce orientation: absolute reduction of ecological impacts of "long-tail" production Smart products (energy efficiency, use optimization) Sustainable product design Sustainability Assessment New materials Remanufacturing /De-production systems

© GSaME, Universität Stuttgart

aME Asustainability Management of Nability Industrial Ecology Systems

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Sustainable Management

manufacturing as if people and planet matter

Dr André Reichel Scientific Coordinator GSaME & Associate Cluster Director H

© GSaME, Universität Stuttgart

Universität Stuttgart Germany

Research Cluster H Sustainability in Manufacturing

Literature

Baecker, Dirk (2007): Studien zur nächsten Gesellschaft. Frankfurt am Main: Suhrkamp.

- Bauer, Joa (2008): Industrielle Ökologie. Theoretische Annäherung an ein Konzept nachhaltiger Produktionsweisen. Online verfügbar unter http://elib.uni-stuttgart.de/opus/volltexte/2008/3610/pdf/Dissertation_Bauer_.pdf / http://elib.uni-stuttgart.de/opus/volltexte/2008/3610 / http://d-nb.info/990544583/34 / http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-36109.
- Becker, Egon; Jahn, Thomas (2006): Soziale Ökologie. Grundzüge einer Wissenschaft von den gesellschaftlichen Naturverhältnissen. Frankfurt am Main: Campus-Verl.
- Braungart, Michael; McDonough, William; Randow, Gero von; Schuler, Karin; Pesch, Ursula (2005): Einfach intelligent produzieren. Cradle to cradle: Die Natur zeigt, wie wir die Dinge besser machen können. 2. Aufl. Berlin: Berliner Taschenbuch Verlag.
- Bund für Umwelt und Naturschutz Deutschland; Wuppertal-Institut für Klima, Umwelt, Energie: Zukunftsfähiges Deutschland in einer globalisierten Welt. Ein Anstoß zur gesellschaftlichen Debatte. 3. Aufl. (2009). Frankfurt am Main: Fischer-Taschenbuch-Verl.
- Isenmann, Ralf (2003): Natur als Vorbild. Plädoyer für ein differenziertes und erweitertes Verständnis der Natur in der Ökonomie. Marburg: Metropolis-Verl. (Ökologie und Wirtschaftsforschung).
- Luhmann, Niklas (2006): Organisation und Entscheidung. 2. Aufl. Wiesbaden: VS Verl. für Sozialwissenschaften.
- Luhmann, Niklas (2008): Ökologische Kommunikation. Kann die moderne Gesellschaft sich auf ökologische Gefährdungen einstellen. 5. Aufl. Wiesbaden: VS Verl. für Sozialwiss.
- Meadows, Donella; Randers, Jørgen; Meadows, Dennis (2007): Grenzen des Wachstums. Das 30-Jahre-Update ; Signal zum Kurswechsel. 2., erg. Aufl. Stuttgart: Hirzel.
- Müller-Christ, Georg (2001): Nachhaltiges Ressourcenmanagement. Eine wirtschaftsökologische Fundierung. Marburg: Metropolis
- Paech, Niko (2005.): Nachhaltiges Wirtschaften jenseits von Innovationsorientierung und Wachstum. Marburg: Metropolis.
- VÖÖ (Ed. 2007): Wiedervorlage dringend: Ansätze für eine Ökonomie der Nachhaltigkeit. Beiträge aus der Arbeit der Vereinigung für Ökologische Ökonomie (VÖÖ) 1996 bis 2006 (2007). München: oekom.

More sources available @ www.andrereichel.de

© GSaME, Universität Stuttgart

